Functional Evolution of Leptin of Ochotona curzoniae in Adaptive Thermogenesis Driven by Cold Environmental Stress
نویسندگان
چکیده
BACKGROUND Environmental stress can accelerate the directional selection and evolutionary rate of specific stress-response proteins to bring about new or altered functions, enhancing an organism's fitness to challenging environments. Plateau pika (Ochotona curzoniae), an endemic and keystone species on Qinghai-Tibetan Plateau, is a high hypoxia and low temperature tolerant mammal with high resting metabolic rate and non-shivering thermogenesis to cope in this harsh plateau environment. Leptin is a key hormone related to how these animals regulate energy homeostasis. Previous molecular evolutionary analysis helped to generate the hypothesis that adaptive evolution of plateau pika leptin may be driven by cold stress. METHODOLOGY/PRINCIPAL FINDINGS To test the hypothesis, recombinant pika leptin was first purified. The thermogenic characteristics of C57BL/6J mice injected with pika leptin under warm (23±1°C) and cold (5±1°C) acclimation is investigated. Expression levels of genes regulating adaptive thermogenesis in brown adipose tissue and the hypothalamus are compared between pika leptin and human leptin treatment, suggesting that pika leptin has adaptively and functionally evolved. Our results show that pika leptin regulates energy homeostasis via reduced food intake and increased energy expenditure under both warm and cold conditions. Compared with human leptin, pika leptin demonstrates a superior induced capacity for adaptive thermogenesis, which is reflected in a more enhanced β-oxidation, mitochondrial biogenesis and heat production. Moreover, leptin treatment combined with cold stimulation has a significant synergistic effect on adaptive thermogenesis, more so than is observed with a single cold exposure or single leptin treatment. CONCLUSIONS/SIGNIFICANCE These findings support the hypothesis that cold stress has driven the functional evolution of plateau pika leptin as an ecological adaptation to the Qinghai-Tibetan Plateau.
منابع مشابه
Natural Selection and Adaptive Evolution of Leptin in the Ochotona Family Driven by the Cold Environmental Stress
BACKGROUND Environmental stress can accelerate the evolutionary rate of specific stress-response proteins and create new functions specialized for different environments, enhancing an organism's fitness to stressful environments. Pikas (order Lagomorpha), endemic, non-hibernating mammals in the modern Holarctic Region, live in cold regions at either high altitudes or high latitudes and have a m...
متن کاملMitochondrial genome analysis of Ochotona curzoniae and implication of cytochrome c oxidase in hypoxic adaptation.
Pikas originated in Asia and are small lagomorphs native to cold climates. The plateau pika, Ochotona curzoniae is a keystone species on the Qinghai-Tibet Plateau and an ideal animal model for hypoxic adaptation studies. Altered mitochondrial function, especially cytochrome c oxidase activity, is an important factor in modulation of energy generation and expenditure during cold and hypoxia adap...
متن کاملLeptin disinhibits nonshivering thermogenesis in infants after maternal separation.
Prolonged maternal separation inhibits endogenous heat production in infant mammals exposed to cold. This inhibition of thermogenesis occurs many hours before energy stores have been fully depleted. The need to protect energy resources during separation-induced starvation may be signaled by declining levels of leptin, a hormone that acts as a "fat signal" and a regulator of energy utilization; ...
متن کاملIntracerebroventricular administration of leptin increase physical activity but has no effect on thermogenesis in cold-acclimated rats
Most small homotherms display low leptin level in response to chronic cold exposure. Cold-induced hypoleptinemia was proved to induce hyperphagia. However, it is still not clear whether hypoleptinemia regulates energy expenditure in cold condition. We try to answer this question in chronic cold-acclimated rats. Results showed that 5-day intracerebroventricular(ICV) infusion of leptin (5 μg/day)...
متن کاملBrown adipose tissue: function and physiological significance.
The function of brown adipose tissue is to transfer energy from food into heat; physiologically, both the heat produced and the resulting decrease in metabolic efficiency can be of significance. Both the acute activity of the tissue, i.e., the heat production, and the recruitment process in the tissue (that results in a higher thermogenic capacity) are under the control of norepinephrine releas...
متن کامل